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ABSTRACT: An emerging paradigm in the field of in vivo
protein biophysics is that nascent-protein behavior is a type of
nonequilibrium phenomenon, where translation-elongation
kinetics can be more important in determining nascent-protein
behavior than the thermodynamic properties of the protein.
Synonymous codon substitutions, which change the trans-
lation rate at select codon positions along a transcript, have
been shown to alter cotranslational protein folding, suggesting
that evolution may have shaped synonymous codon usage in
the genomes of organisms in part to increase the amount of
folded and functional nascent protein. Here, we develop a
Monte Carlo-master-equation method that allows for the
control of nascent-chain folding during translation through the
rational design of mRNA sequences to guide the cotranslational folding process. We test this framework using coarse-grained
molecular dynamics simulations and find it provides optimal mRNA sequences to control the simulated, cotranslational folding of
a protein in a user-prescribed manner. With this approach we discover that some codon positions in a transcript can have a much
greater impact on nascent-protein folding than others because they tend to be positions where the nascent chain populates states
that are far from equilibrium, as well as being dependent on a complex ratio of time scales. As a consequence, different
cotranslational profiles of the same protein can have different critical codon positions and different numbers of synonymous
mRNA sequences that encode for them. These findings explain that there is a fundamental connection between the
nonequilibrium nature of cotranslational processes, nascent-protein behavior, and synonymous codon usage.

■ INTRODUCTION

Precise timing is often required for the accuracy and efficiency
of the numerous cotranslational processes acting on a nascent
protein, which help it to attain its functionality.1 Therefore, the
ability of a nascent-protein molecule to form its native structure
and acquire its biological function can be influenced by the rate
at which individual codon positions in an mRNA molecule are
translated by the ribosome.2−4 Synthesize a signal sequence too
fast and signal recognition particle (SRP) may not be able to
bind to it, resulting in a decreased probability of successful
cotranslational translocation of the nascent protein through the
SEC translocon.5,6 Change the translation rate at a critical
codon position and a protein will switch from cotranslational
folding to misfolding, resulting in an increased population of
insoluble7 or soluble, but nonfunctional, protein.8 For these
reasons, evolutionary selection pressures have likely shaped
codon usage bias in organisms in part to maximize the
efficiency of cotranslational processes by tuning the translation-
rate profile along the coding sequence through synonymous
codon mutations9 (Figure 1a).

The physical rules governing why changes in translation rate
at select codon positions have a significant effect on nascent-
protein folding though changes at other positions have little to
no effect are unknown. Hu and co-workers10 created 342
synonymous mRNA sequence variants of the human anti-IgE
antibody and found that the transcripts produced protein of
varying solubility and functionality. Some synonymous
mutations had no effect on these properties, while others
decreased or increased the protein’s specific activity by as much
as 10-fold. These results support the idea that synonymous
mutations at different locations can alter the likelihood of
cotranslational folding to varying degrees.
Cells may influence cotranslational behavior by altering the

translation-rate profile along an mRNA’s coding sequence.11−15

This suggests that it should be possible to rationally design
mRNA sequences using synonymous codons to quantitatively
control nascent-protein behavior at all codon positions during
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synthesis. Empirical codon optimization strategies for heterol-
ogous protein expression often attempt to maximize protein
production without regard for the quality of the protein
produced in terms of its solubility, folding, and function-
ality.16,17 Furthermore, such optimization approaches do not
explicitly account for the profound effect that translation-
elongation rates can have on nascent-protein behavior.
Here, we focus on the process of cotranslational folding and

show that it is possible to rapidly design mRNA sequences to
quantitatively control nascent-protein folding at each step
during translation elongation given knowledge of the
synonymous codon translation rates, which can significantly
vary,18,19 and the rates of interconversion between states of the
nascent protein. As a proof of principle, we test the predictions
from this framework against coarse-grained molecular dynamics
simulations of cotranslational folding in which codons can
adopt one of three possible translation rates. We also test our
framework in the situation in which each of the 61 sense
codons adopt their own unique translation rate. We then
explore the rules governing the codon-position-dependent
impact that changes in translation rate can have on cotransla-
tional folding.

■ METHODS
Master Equation for Calculating the Cotranslational Profile

of a Protein That Can Populate N-States. Implementation of our
framework (Figure 1b) requires the accurate prediction of the effect
that a change in a codon position’s translation rate will have on a
protein’s cotranslational profile. Therefore, we derived an analytical
expression for the steady-state probability that a protein will be in any

one of N possible states at each nascent chain length during its
synthesis. The probability that a nascent chain of length j is in state l at
time t is denoted by Pl(j,t), where l = {1, 2, ..., N}. The master
equation governing the time evolution of Pl(j,t) can be written as
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where kil(j) is the rate at which state i interconverts with state l at
codon position j and ωl(j) is the rate at which codon j − 1 is translated
when the nascent chain is in state l. The first and second terms of the
right-hand side of eq 1 determine the gain and loss in Pl(j,t) arising
from the folding kinetics of the protein domain; the third and fourth
terms are the gain and loss contributions from translation-elongation
kinetics. Equation 1 can also be written as a matrix equation

= − −
j t
t

j j t j j t
P

M P T P
d ( , )

d
( ) ( , ) ( ) ( 1, )

(2)

where P(j,t) is a column vector of the state probabilities
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Figure 1. A framework for controlling cotranslational folding through the rational design of mRNA sequences. (a) An illustration of changes in
cotranslational folding due to changes in the translation-rate profile induced by synonymous codon substitutions. Dark-green, light-green, and white
bars represent the fast-, medium-, and slow-translating codons in the mRNA sequence that encode for the same protein. (b) Flowchart illustrating
the steps involved in our Monte Carlo-master-equation-based framework for designing mRNA sequences. A user-defined target profile and rate
matrices are provided as an input to our framework, which uses the steps listed in the right to find the mRNA sequence that best reproduce the
target profile.
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M(j) and T(j) are N × N size transition matrices describing the
transitions between states in the nascent protein. Solving eq 2 under

steady-state conditions =( )i.e., 0j t
t

Pd ( , )
d
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relation
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That is, the steady-state probabilities (P(j)) at codon j depend on what
happened at all earlier codon positions (P(j − 1)). The elements of
P(j) are denoted as P1(j), P2(j),...,PN−1(j) and PN(j). Translation, in
this model, involves an open system; therefore, the sum of the
probabilities of populating different states at codon position j is not
equal to one. For this reason, we then normalized these probabilities at
each codon position by dividing the term ∑i = 1

N Pi(j).
Coarse-Grained Model. The coarse-grained simulation

model20−22 of the ribosome-nascent chain complex includes the
large ribosomal subunit and the nascent-chain, which, at full length, is
composed of a 43-residue polyglycine linker covalently attached to the
C terminus of the single-domain MIT (microtubule interacting and
trafficking) protein found in humans. The MIT domain is 77 residues
in length and adopts an antiparallel three-helix bundle structure in its
native state.23 We simulated this protein’s behavior tethered to E. coli’s
50S ribosomal subunit during both continuous and arrested
translation. In the coarse-grained model, amino acids were represented
by a single interaction site at their Cα positions. A +1e charge was
assigned to interaction sites representing lysine and arginine residues,
and a −1e charge was assigned to the sites representing glutamine and
aspartate residues. Other residues were assigned zero charge. Purine
and pyrimidine nucleotides in the ribosomal RNA were represented by
three and four interaction sites,21 respectively, that represent the ribose
ring, the phosphate group, and each conjugated ring in the base. The
coarse-grained interaction sites were positioned at the geometric
center of each of these groups. The interaction site representing the
phosphate group was assigned a charge of −1e.
The coarse-grained force field is the sum of five different energy

terms

= + + + +E E E E E Etot bond angle dihedral elec LJ (4)

The first four energy terms in eq 4 account, respectively, for bond
energy, bond angle, dihedral angle, and pairwise electrostatic
interactions, where Ebond = ∑i Kb(ri − r0)
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between different protein and RNA molecules. Kb is the bond force
constant; (ri − r0) is the distance of an interaction site from its
equilibrium position; θα and θβ are the location of two minima on the
bond-angle potential energy surface, and their angle force constants
are Kα and Kβ, respectively; ϵα is used to tune the relative balance
between these two bond-angle energy minima; Kψ is the dihedral force
constant; j is the multiplicity of the function; ψ is the dihedral angle; δij
is the phase shift. In the simulations, we used22,25 a Debye length lD =
10 Å and dielectric constant ϵr = 78.5.

The last term in eq 4 incorporates structure-dependent van der
Waals interactions. We utilized Go̅’s approach26 that treats the native
interactions as attractive and non-native interactions as repulsive. A
modified Lennard-Jones energy term,27 which accounts for desolvation
barriers, was used and is defined as
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The Lennard−Jones well-depth ϵij between interaction sites i and j
that form native contacts in the MIT protein was set equal to the value
of the Bentancourt−Thirumalai statistical potential28 and scaled by a
multiplicative factor to achieve a realistic native-state stability for the
MIT protein. All other Lennard−Jones interactions were treated as
effectively repulsive by setting their ϵij = 0.000132 kcal/mol, as in the
Karanicolas−Brooks model.27 The collision diameter σij for the two
interaction sites of MIT protein is their distance in the crystal structure
divided by 21/6. σij’s for the intralinker interactions (see Supporting
Information) were calculated as defined in ref 22. We used σij = (σi +
σj)/2 for the interaction between the polyglycine and the MIT
domain, the ribosome and the MIT domain, and the ribosome and the
linker. The values of σi and other parameters are reported in the
Supporting Information. In the simulations, the ribosome is held rigid.
Therefore, there are no terms in the force field to represent the
bonded interactions within ribosome 50S subunit (ribosomal RNA and
ribosomal protein).

Langevin Dynamics Simulations. We used Charmm29 version
c35b5 to run Langevin dynamics simulations of the ribosome-nascent
chain complex. An integration time step of 0.015 ps, collision
frequency of 0.05 ps−1, and system temperature of 310 K were used.
For the continuous translation simulations, 1200 independent
trajectories were run for the fast and medium mRNA sequences,
while 720 trajectories were simulated for all other cases. For the
arrested ribosome simulations, we ran 20 independent Langevin
dynamics simulations of the arrested ribosome-nascent chain complex
at each codon position between 69 and 89 codons (inclusive) and 8
independent trajectories at all other lengths. Different initial velocity
distributions were used to initiate each trajectory. The ribosome was
held rigid during the simulations by using the “cons fix” command of
the constraint module in Charmm. This constraint has no significant
effect on the thermodynamics and kinetics of cotranslational protein
folding because the ribosome exit tunnel does not exhibit any large-
scale fluctuations.30 System configurations were saved every 50 time
steps in the simulations of continuous translation of the slow mRNA
sequence, every 150 time steps for the optimized mRNA sequences,
and every 500 time steps for all other simulations. The MIT protein
cannot populate the intermediate and folded states at codon positions
1−65. The starting structure for all simulations therefore consisted of a
ribosome-nascent chain complex containing the 65 N-terminal
residues of the protein. We used the procedure described in ref 20
to stochastically add amino acids to the nascent chain. The dwell time
of the ribosome at each codon position was inverse of its codon
translation rate. Because the Langevin dynamics simulations were
performed in the low-friction regime, folding kinetics are faster in
comparison to experimental values. Therefore, to keep a reasonable
ratio of the time scales of folding and translation we increased the
value of the translation rates to 66.4, 664.0, and 6640.0 μs−1 for the
slow-, medium-, and fast-translating codons, respectively.

Identification of Markov States. In order to identify the three
different states MIT can populate during the simulations we used
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Markov state definitions that have been previously published.20

Specifically, we used two order parameters, the fraction of native
contacts between helices 1 and 2 (Q1−2) and between helix 3 and
helices 1 and 2 (Q12−3). =−Q n

n1 2 c
12

12
and =−

−

−
Q n

n12 3 c
12 3

12 3
. n12 and n12−3

are the number of native contacts formed by helix 1 with 2 and helix 3
with helices 1 and 2 in a given ribosome-nascent chain conformation,
while n12

c and n12−3
c are the number of native contacts between these

structural elements in the crystal structure. The ribosome simulations
involve situations in which the MIT domain might not be fully
synthesized. In these cases the calculations of Q1−2 and Q12−3 are
unchanged; n12

c and n12−3
c retain their constant values, and it is only the

n12 and n12−3 terms which will decrease compared to the fully
synthesized MIT situation. The free energy surface of the MIT protein
as a function of Q1−2 and Q12−3 displays three basins which correspond
to the unfolded, intermediate, and folded states of the MIT protein
(Figure S1). A conformation is identified as being folded if Q1−2 > 0.85
and Q12−3 > 0.85, as being in the intermediate state if 0.95 > Q1−2 >
0.75 and Q12−3 < 0.05, and as being unfolded if Q1−2 < 0.05 and Q12−3
< 0.05 (Figure S1). The conformations not belonging to any of these
states are in the transition region. If a simulation trajectory enters the
transition region then the most recently visited state is assigned to
these conformations. Studies have shown this type of “core-based”
partitioning of the free energy surface can accurately capture the
essential kinetics in molecular dynamics simulations.31,32

Calculation of Rate Matrices. The master equation calculation
requires knowledge of the M(j) rate matrices. We developed a method
to calculate these rates from the time series of different states acquired
by the protein during the coarse-grained simulations. Suppose a
protein can populate N different states at nascent chain length j. Then
assuming transitions between states are Markovian, the first passage
time distribution of transitioning out of state i to any other state will
decay exponentially as

= −f i k i t( ) exp( ( ) ) (6)
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In eq 7, kil is the rate of transitioning from state i to l. Therefore, k(i) is
the sum of the rates leading to all topologically connected states from
state i (e.g., Figure 2b). Moreover, if n(i → l) is the total number of
transitions from state i to l observed during the simulations then
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For an N-state protein there are N − 2 independent equations of the
same form as eq 8. Solving eqs 7 and 8 for kil determines the N − 1
transition rates leading to any state from state i.
In order to calculate the rates for MIT we utilized the data from the

arrested ribosome simulations. For each of the simulation trajectories
we produced the time series of Markov states that were then used to
numerically calculate the f(i)s and n(i → k)s. We then performed a
least-squares fit of the f(i)s to a single-exponential function using
Gnuplot 4.233 and extracted the k(i)s. The transition rates between
states were then calculated by solving eqs 7 and 8. These rates define
the M(j)s as indicated in eq 2. Note that this method differs from eq 5
utilized in ref 20. In that method, interconversion rates between states
were directly calculated from the number of transitions per unit time,
whereas in the current approach a numerical fitting to an exponential
function is carried out to the dwell-time distribution in state i.
Estimating the Statistical Error of the Steady-State Master

Equation Predictions. The rate matrices M(j) were used in eq 3 to
make predictions about the influence of codon translation rates on the
cotranslational profile of MIT. To calculate the 95% confidence
intervals associated with these predictions we used the following
procedure that relies on the construction of rate matrices that preserve
the transition probabilities of the original trajectories. First, for each of

the Xj independent arrested-ribosome simulations run at codon
position j (where Xj = 8 or 20 depending on the codon position), the
Markov state time series was constructed. Second, from each of these
Xj Markov state time series the probability of transitioning from state i
to state k during time interval Δt was calculated as

Δ = → |Δ
∑ → |Δ=
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where n[Xj](i → k|Δt) is the total number of transitions between state i
and k during trajectory Xj given that you are sampling the time series
of states at a time interval of Δt.34 The summation in the denominator
of eq 9 is over the three different states that the MIT protein can
populate. Thus, for the MIT protein, we have 9 different Pik

[Xj](Δt)
values for each trajectory. Third, these 9 values from trajectory Xj were
used to construct 104 virtual trajectories through Markov-state space
that have the same duration as the original trajectory. The construction
of a virtual trajectory is done in the following manner. At time t = 0 the
system is assumed to be unfolded. At t = Δt the probability that the
system is now in state i is calculated by selecting a random number
between 0 and 1 and determining which region of the number line the
random number falls in, where different regions correspond to
different transition probabilities PUk

[Xj](Δt) from U to k. For example, if
the random number fell in the U → F region the virtual time series for

Figure 2. The three-helix bundle MIT protein cotranslationally folds
through a 3-state, parallel folding mechanism.20 (a) Structures from
coarse-grained simulations of the ribosome-nascent chain complexes
are shown with the MIT protein in the unfolded, intermediate, and
folded states. Ribosomal RNA and proteins are shown in red and
yellow, respectively, while the MIT protein is shown in green. (b)
Parallel cotranslational folding reaction scheme. Codons in the mRNA
sequence of MIT protein are sequentially labeled by an integer index j.
Incorporation of an amino acid into the nascent chain shifts the
ribosome-nascent chain complex to the next codon with rate ω(j + 1).
kUF(j) and kFU(j) are the rates of transition from U to F and F to U,
kUI(j) and kIU(j) are the rates of transition from U to I and I to U, and
kIF(j) and kFI(j) are the rates of transition from I to F and F to I at
codon position j. (c) Folded state of the MIT domain forms a three-
helix bundle (PDB ID: 1YXR).
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the first two time points would be recorded as {U,F}; if it fell in the U
→ U region it would be recorded as {U,U}. At each subsequent time
interval this stochastic selection of transitions is repeated until the
duration of the trajectory is the same as the original. Fourthly, the third
step was repeated for all Xj trajectories. Thus, at this stage of the
procedure there are 104 sets containing either 8 or 20 different virtual
trajectories at codon position j. From each of these sets a rate matrix
M(j) was computed, resulting in 104 rate matrices at each codon
position. Each rate matrix was then used in eq 3 to independently
predict the cotranslational profile of the MIT protein, resulting in 104

profiles. The 95% confidence interval of the Pi(j) predicted from eq 3
was calculated as the standard deviation in the 104 probabilities of
being in state i multiplied by 1.95.35

Calculating the Cotranslational Profiles and Their Errors
from Coarse-Grained Simulations. From the continuous synthesis
simulations, MIT’s steady-state cotranslational profiles were calculated
as
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where Pi(j) is the steady-state probability of being in state i at codon
position j and δ(i,j,l,k) is the Kronecker delta that equals 1 when the
system is in state i at codon j in frame l of trajectory k. The
summations are over the NTraj independent synthesis trajectories for a
given translation-rate profile and the NFrames(k,j) saved during
simulation trajectory k at codon j. In eq 10, Pi,k(j) is the probability
of being in state i at codon j in trajectory k.
To estimate the statistical errors associated with the Pi(j) values

calculated by using eq 10 we used the Bootstrapping method.36

Specifically, there were either 720 or 1200 Pi,k(j) values for a given
translation-rate profile. 104 bootstrapping cycles were applied to these
720 or 1200 member sets to calculate the 95% confidence interval
about Pi(j).
Design of mRNA Sequences That Reproduce the User-

Defined Cotranslational Profile. Our framework (Figure 1b)
requires a target cotranslational profile as an input, which consists of a
list of state probabilities as a function of nascent chain length. In the
case of the MIT protein those state probabilities are denoted PU

tar(j),
PI
tar(j), and PF

tar(j) for the unfolded, intermediate, and folded state,
respectively, at codon position j. The “tar” superscript indicates these
are the user-defined target values. The algorithm of our Monte Carlo-
master-equation based framework is as follows. We start by supplying
an initial mRNA sequence; then a new sequence is generated by
synonymously mutating a codon at a randomly selected position (step
1 in Figure 1b). The resulting cotranslational profile (predicted by eq
3) of this new mRNA sequence is compared to the target
cotranslational profile on the basis of the energy term
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where PU
new(j), PI

new(j), and PF
new(j) are the steady-state probabilities of

the MIT domain populations in unfolded, intermediate, and folded
states, respectively, for the new mRNA sequence. However, any other
metric which can quantify the deviation between two cotranslational
profiles can also be used as an alternative for E(new). Larger E(new)
values correspond to greater deviations between these two cotransla-
tional profiles. Therefore, the overall aim of our framework is to
identify the translation-rate profile that minimizes the energy term
E(new).
The decision to accept or reject this new mRNA sequence (step 2)

utilizes the Metropolis criterion by calculating the quantity

= −ΔE E E(new) (old) (12)

where E(old) is the energy associated with the old mRNA sequence. If
EΔ < 0 then the new mRNA sequence is accepted and replaces the old
sequence (step 3a); if EΔ ≥ 0 the new mRNA sequence is accepted
with probability e−EΔ/T (step 3b). This process is then repeated 60
million times and yields converged results (Figure 5).

The temperature T used in step 3b effects the probability of
accepting the new mRNA sequence when EΔ > 0. Simulated
annealing37 is a common way to enhance the efficiency of Monte
Carlo searches. Therefore, we ran our algorithm using a simulated
annealing temperature schedule starting with T = 10 K and ending
when T ≤ 2.4 × 10−8 K. Every 60 000 Monte Carlo steps the system
was quenched to a lower temperature by multiplying the current T by
a factor of 0.99.

Exact Solution of a Two-State Cotranslational Folding
Model and Its Sensitivity to Synonymous Mutations. Assume
a protein domain can only populate one of two possible states during
translation, U and F. The rate of transitioning from the unfolded to the
folded state at nascent chain length j is denoted kUF(j), and the reverse
transition occurs with rate kFU(j). Then using eq 3 we find

ω
ω
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+ + −
+ + +

P j
k j j P j
k j k j j

( )
( ) ( 1) ( 1)
( ) ( ) ( 1)

i
i

iF
UF F

wt

UF FU (13)

where i ∈ {wt,mut}.
The change in the steady-state probability of the folded state at

codon position j upon introducing a synonymous mutation is then
(see Supporting Information for full derivation)
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In eq 15, keq(j) = kUF(j) + kFU(j) is the characteristic rate over which a
nonequilibrium configuration decays to equilibrium at codon position
j. The change in the steady-state probability of the folded state at
codon position k downstream of the synonymous mutation site j is
(see Supporting Information for full derivation)
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The parameter Cj+1,k is always less than or equal to 1. Therefore, the
effect of the mutation at codon position j tends to diminish at
subsequent codon positions for a two-state system. Inserting eqs 14
and 16 into the expressions for χ(j) (eq 24) and Δ(j) (eq 25) yields

χ = | | Δj A B j( ) ( ) (18)

where

=
+ ∑

− +
= + +

B
C

N j

1

1
i j
N

j i

c

1 1,
c

(19)

The parameter B determines how the change in a cotranslational
profile upon introducing a synonymous mutation propagates to
subsequent codon positions and is bounded by 0 and 1 (0 ≤ B ≤ 1). A
smaller B value indicates that the effect of a synonymous mutation will
disapear or be significantly reduced after the translation of just a few
downstream codon positions, whereas a large B value suggests the
cotranslational perturbation is propagated far downstream of the
original mutation site.

Estimation of the Codon Translation Rates for E. coli Protein
Domains. As in ref 38, we used the method of Viljoen and co-
workers39 to estimate the codon translation rates in E. coli. The
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method calculates the average time taken to incorporate an amino acid
into a nascent chain at 310 K by using the formula

τ = + +X C X R X( ) 9.06 1.45[10.48 ( ) 0.5 ( )] (20)

In eq 20, τ(X) is the codon translation time in milliseconds for codon
X and 9.06 ms is the time of peptide bond formation between two
successive amino acids and translocation of the ribosome to the next
codon. Coefficients C(X) and R(X) in eq 20 are functions of the
specified codon, concentrations of cognate and noncognate tRNA
molecules, the diffusion constants of tRNA molecules, and the
temperature of the cytosol. Details of the method and numerical values
of codon translation time for E. coli under various conditions are given
in ref 38. We used the codon translation time for E. coli doubling time
of 150 min as reported in Table S1 of ref 38 and inverted them to
calculate corresponding rates.
Estimation of Folding and Unfolding Rates of E. coli Protein

Domains at Each Nascent Chain Length. Our framework requires
domain’s folding (kUF(j)) and unfolding (kFU(j)) rates at each nascent
chain length j. To compute these rates for the E. coli domains we used
a previously developed38 model in which

=
+ +− + +

k j
k
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1 e j l b
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25
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1 e j l
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In eqs 21 and 22, kUF(bulk) and kFU(bulk) are the bulk folding and
unfolding rates of the E. coli domains of interest and l is the number of
residues after the most C-terminal residue of the domain. We used
previously reported38 kFU(bulk) and kUF(bulk) values that were
obtained using the method developed by de Sancho-Muñoz.40 The
parameters a, b, c, and d are 404, 3205.5, 1.72, and 0.953,
respectively.38

■ RESULTS
Framework for Controlling Cotranslational Folding.

The cotranslational folding process of a protein domain is
characterized by its cotranslational profile, which is the steady-
state probability of the domain being in a particular state as a
function of the nascent chain length during synthesis. The
states that a domain in a multidomain protein can populate
during its synthesis include unfolded (U), intermediate (I),
folded (F), and misfolded (M) states. Such domain-wise
folding can occur before the full-length protein has been
synthesized (Figure 2a). Under physiological conditions, the
folded state is often the most stable state that a protein can
populate. Misfolded states are metastable and contain non-
native structure. Intermediates are partly folded and form
transiently stable states which can transition to the folded, the
unfolded, or the misfolded states (Figure 2b).
Controlling cotranslational folding using synonymous

mutations means being able to alter this cotranslational profile
to match a user-defined cotranslational profile through the
appropriate choice of synonymous codons. These synonymous
codons may alter the translation-rate profile along the coding
sequence.41−43 As a consequence, controlling cotranslational
folding requires that we rationally alter an mRNA’s translation-
rate profile. Therefore, any framework to control cotransla-
tional folding must be able to predict how changing the
translation rate at a codon position changes a protein’s
cotranslational profile, and it also must be able to efficiently
search the astronomically large synonymous-codon space of a
transcripts’s coding sequence to find the optimal mRNA

sequence that is predicted to reproduce the user-defined
cotranslational profile.
Recent studies20,44,45 have found that a Markov-state-based

analysis34,46,47 is one way to accurately predict the impact that
changing codon translation rates have on a protein’s cotransla-
tional profile, provided the interconversion rates between states
are known. Also, the Metropolis Monte Carlo algorithm37 is a
standard technique in the physical sciences used to search large
state spaces for optimal solutions. Therefore, we propose that
the Monte Carlo-master-equation-based framework shown in
Figure 1b is a way to rationally design mRNA sequences to
control cotranslational folding in silico as well as in wet-lab
experiments.
In this design algorithm, a user-defined cotranslational profile

is supplied as an input. Then an initial starting mRNA sequence
is randomly mutated with a single synonymous codon
substitution to create a new sequence (step 1, Figure 1b).
The cotranslational profiles of the old and new sequences are
predicted using a master equation (eq 3), and the deviations of
these profiles from the user-defined cotranslational profile are
calculated (eq 11). These deviations are then used to compute
EΔ (eq 12, step 2), which is employed in the Metropolis
criterion to either accept or reject the newly mutated mRNA
sequence (step 3a or step 3b). This process is iterated until an
mRNA sequence is found that results in the best agreement
with the target cotranslational profile.
Here, we test this framework in silico by designing optimal

mRNA sequences (i.e., translation-rate profiles) that accurately
control the cotranslational profile generated from coarse-
grained molecular dynamics simulations of protein synthesis.
To build this framework, we must first establish that the master
equation approach, used in step 2 (Figure 1b), is accurate
enough to predict the impact of changing codon translation
rates at specific codon positions. If an accurate master equation
cannot be created the framework will not work.
We start by solving the steady-state master equation for the

probabilities that a nascent chain can populate various states as
a function of the codon position in the corresponding coding
sequence. The result is (eq 3) the recursive relation

= −−j j j jP M T P( ) ( ) ( ) ( 1)1
(3)

where P(j) is a column vector containing the steady-state
probabilities for the N states (e.g., U, I, and F) that the nascent
chain can potentially populate during its synthesis. M(j) and
T(j) in eq 3 are N × N matrices. The elements of M(j) are
functions of the rates at which the nascent chain interconverts
between different states at nascent chain length j and the
elements of T(j) are a function of the codon translation rate at
j. Detailed expressions ofM(j) and T(j) are given in eq 2. Thus,
provided the rate matrix M(j) is known, eq 3 can be used to
predict how the cotranslational profile (i.e., P(j) versus j) of a
protein changes due to changes in individual codon translation
rates.
To test the accuracy of predictions from the master equation

(eq 3), we used previously generated20 coarse-grained
simulation data of the synthesis of the single-domain MIT
protein. MIT is a 77-residue protein that forms a 3-helix bundle
in its folded state and can populate unfolded, intermediate, and
folded states (Figure 2c). Specifically, arrested ribosome
simulations of this ribosome-nascent chain construct in which
the MIT protein was C-terminally fused to a 43-amino-acid-
long unstructured linker (to mimic multidomain folding) were
analyzed, and the rate matrix M(j) was computed at various
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nascent chain lengths (see Methods). These M(j) values were
then used in eq 3 to predict how uniformly changing the
translation rate at all codon positions altered the cotranslational
profile of this protein. These predictions were then tested
against explicit, continuous synthesis simulations at those same
global translation rates. We find that the master equation
approach accurately predicts (Figure 3, solid lines) the

cotranslational folding behavior from the coarse-grained
simulations (Figure 3, discrete data points). (Note, no folding
events can occur before the 69th codon position because
approximately 30 residues are needed to span the ribosome exit
tunnel, and populating the intermediate state requires an
additional 40 residues to be outside the tunnel.) Thus, it is
possible to predict the effect of changing codon translation
rates on a protein’s cotranslational profile provided the M(j)s
are known.
Having established that the master equation approach yields

accurate predictions for the MIT protein, we next tested
whether our framework could design mRNA sequences to
control its cotranslational folding. To do this for the MIT
protein we defined six different cotranslational profiles that we
wanted our framework to reproduce (Figure 4, solid lines).
Some of these profiles are quite irregular in shape, including
step function and linear-ramp behaviors. These six profiles were
chosen solely because they exhibit a wide range of behaviors. In
all organisms, there are on average three synonymous codons
per amino acid (i.e., 61 sense codons for 20 naturally occurring
amino acids). Therefore, in this proof-of-principle test, we
assumed that three synonymous codons exist for each amino
acida fast-, medium-, and slow-translating codon. Thus, for
MIT’s mRNA, which is 120 codons in length, there are 3120

(∼1057) different mRNA sequences that can encode its primary
structure. Using these six different profiles as user-defined
inputs to our framework yields six different optimized mRNA
sequences (Figure 4 and Table S2). As an explicit check that

these optimized sequences actually control folding in the user-
defined manner we ran Langevin dynamics simulations of
continuous synthesis of the MIT protein for these six optimized
translation-rate profiles and calculated the resulting cotransla-
tional profiles from these simulations. We find excellent
agreement between the first five user-defined profiles and the
profiles generated from the coarse-grained simulations of
protein synthesis (Figure 4). The last profile (Figure 4f)
shows poor agreement for reasons we explain later. Thus, our
framework can rapidly and accurately design mRNA sequences
to quantitatively control cotranslational folding during syn-
thesis.

Number of Degenerate mRNA Sequences Depends
on the Cotranslational Profile. With this in silico-validated
method in hand, we can now address a range of important
biological questions. Fundamental questions that have not been
addressed in the literature include how many different
synonymous mRNA sequences can give rise to a particular
cotranslational profile and whether this degeneracy depends on
the cotranslational profile. These are important questions
because they are relevant to the evolutionary processes shaping
synonymous-codon usage in organisms.
We address these questions by calculating how many

different mRNA sequences give rise to each of the five
cotranslational profiles shown in Figure 4a−e. To calculate this
quantity we ran our framework (Figure 1b) 32 independent
times for each profile and recorded each unique mRNA
sequence that reproduced the optimized target profile within a
threshold of E(MCk) ≤ 0.075, where E(MCk) is defined as

∑= | − | + | − |

+ | − |
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E MC P j P j P j P j
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In eq 23, PU
opt(j), PI

opt(j), and PF
opt(j) are the steady-state

probabilities of the MIT domain being in states U, I, and F,
respectively, that arise from the optimal mRNA sequences
shown in Figure 4. PU

MC,k(j), PI
MC,k(j), and PF

MC,k(j) are the
steady-state probabilities arising from the kth random mRNA
sequence generated by our framework. Nc in eq 23 is the
number of codons in the coding sequence of the mRNA. Thus,
by using the 0.075 threshold, we can distinguish mRNA
sequences that give rise to the same cotranslational profile (i.e.,
“degenerate” sequences) or significantly different profiles (i.e.,
“nondegenerate” sequences). An example of the similarity
between an optimized and a degenerate profile is shown in
Figure S2. Since only the unfolded state of MIT can be
populated at codon positions 1−69 we ignore any degeneracy
arising from this region and instead focus on the region
between codon positions 70 and 120, as it is in this region that
changing translation rates can alter the state that is populated
by the nascent chain.
We find that the number of degenerate mRNA sequences

depends on the cotranslational profile and ranges from 84 to
13 359 for the five profiles we tested (Figure 5 and Table S4).
For example, the profile in Figure 4e is reproduced by only 84
mRNA sequences, while the profile in Figure 4a is reproduced
by 13 359 sequences. Thus, this degeneracy spans an
astonishing 3 orders of magnitude for the same protein and
depends on the details of the cotranslational profile. These
results have the biological implication that highly degenerate

Figure 3. Master equation accurately predicts the effect of changing
codon translation rates on the cotranslational profile of the MIT
protein. The steady-state probabilities of the MIT domain being in the
unfolded, intermediate, and folded states are plotted as a function of
the nascent chain length in black, red, and blue, respectively. The
probabilities arising from mRNA sequences consisting of only slow-,
medium-, or fast-translating codons are shown in the top, middle, and
bottom panels, respectively. Solid lines are the numerical predictions
made by the master equation approach, and the gray area around these
curves covers the 95% confidence interval of the numerical predictions.
(Note, the error is only slightly greater than the thickness of the lines.)
Error bars for the coarse-grained simulation data are smaller than their
symbols. The lowest R2 values among unfolded, intermediate, and
folded state probability curves for the fast-, medium-, and slow-
translating mRNA sequences are, respectively, 0.956, 0.994, and 0.995.
For each curve, all p values are less than 0.0001 (Table S1).
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cotranslational profiles are more likely to be robust to random
synonymous mutations.

To test whether our search for degenerate sequences was
exhaustive, we plotted the number of unique, degenerate
sequences that were found as a function of the Monte Carlo
step in our framework. For all profiles, converged behavior (i.e.,
a plateau region) is observed (Figure 5), consistent with an
exhaustive search. Further support for an exhaustive search is
that of the 32 independent runs of our framework; a majority
were able to find all of the degenerate sequences within a single
run (Table S4). Thus, our calculations are very likely to have
identified all degenerate sequences for each of the profiles we
tested.

Critical Codon Positions Depend on the Cotransla-
tional Profile. Our master equation model (eq 3) allows us to
rapidly identify the codon positions where a synonymous
codon substitution will have a significant effect on the
cotranslational profile. We carried out an in silico synon-
ymous-codon scanning experiment in which single-point
mutations were made at each and every codon position in
the optimized mRNA sequences (Figure 4), and the effect on
MIT’s cotranslational profile was predicted using eq 3 for each
mutation separately. The effect of a mutation at codon position
j on the cotranslational profile was measured as the root-
squared deviation between the mutated and the optimized
profile

Figure 4. Monte Carlo-master-equation-based framework successfully designs mRNA sequences that reproduce user-defined cotranslational profiles
(a−f). Probabilities of populating the unfolded, intermediate, and folded states of the MIT domain are plotted against the nascent chain length in
black, red, and blue, respectively. User-defined target cotranslational profiles are plotted as solid lines, while the discrete data points were obtained
from the coarse-grained simulations of the continuous translation process from the optimized mRNA sequences generated by our framework (Table
S2). Simulation data are plotted with error bars representing the 95% confidence interval. At the bottom of each panel, the translation-rate profile of
the optimized mRNA sequence is shown; dark-green, green, and white bars represent fast-, medium-, and slow-translating codons, respectively. The
lowest R2 values among the unfolded, intermediate, and folded state probability curves in a, b, c, d, e, and f are, respectively, 0.993, 0.962, 0.979,
0.947, 0.981, and 0.653. For all curves, the p values are less than 0.0001 (Table S3).

Figure 5. The number of degenerate mRNA sequences that encode
the same cotranslational profile is a function of the cotranslational
profile. The number of unique mRNA sequences (i.e., degenerate
sequences) that give rise to the same cotranslational profile as the
optimized mRNA sequence as a function of the Monte Carlo step
number in a run of our framework. The number of degenerate
sequences shown at each step is averaged over all 32 independent runs.
The number of degenerate sequences identified for the cotranslational
profiles shown in Figure 4a, 4b, 4c, 4d, and 4e are indicated by the
lines colored in magenta, blue, black, green, and red, respectively.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b08145
J. Am. Chem. Soc. 2016, 138, 1180−1195

1187

http://pubs.acs.org/doi/suppl/10.1021/jacs.5b08145/suppl_file/ja5b08145_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b08145/suppl_file/ja5b08145_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b08145/suppl_file/ja5b08145_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b08145/suppl_file/ja5b08145_si_001.pdf
http://dx.doi.org/10.1021/jacs.5b08145


∑χ = − + − + −
=

j P k P k P k P k P k P k( ) (( ( ) ( )) ( ( ) ( )) ( ( ) ( )) )
k j

N

U
org

U
mut 2

I
org

I
mut 2

F
org

F
mut 2

c

(24)

In eq 24, PU
org(k), PI

org(k), and PF
org(k) are the steady-state

probabilities of the MIT domain being in states U, I, and F,
respectively, for the original mRNA sequence (Figure 4) and
PU
mut(k), PI

mut(k), and PF
mut(k) are the steady-state probabilities

after the synonymous mutation was introduced. (Note, any
initial mRNA sequence can be used in eq 24; use of an
optimized sequence as the starting sequence is not required.) In
this in silico experiment, we have two choices for the
synonymous substitution at each codon position since we
assume there are only three synonymous codons per amino
acid. For example, if the original codon at a particular position
is a fast-translating codon, we can substitute either a medium or
a slow codon in its place. We carry out both possible types of
single-point substitutions at each codon position and calculate
the sensitivity, i.e., χ(j), for each case.
Critical codon positions are identified by large χmax(j) (i.e.,

the maximum sensitivity between the two possible synonymous
substitutions for a codon position) values. We find that the
positions of critical codons change depending on the
cotranslational profile (Figure 6). For example, in Figure 6d,

the sensitivity distribution is bimodal, whereas in Figure 6e, the
distribution is unimodal. Between these two distributions the
most sensitive codon positions switch from codon positions 84
and 115 in Figure 6d to position 90 in Figure 6e. Thus, for the
same protein, a synonymous codon substitution at a particular
position may or may not have a significant impact on folding
depending on the original cotranslational profile. Later in the
paper we discuss the physical origins of these critical codon
positions.
Degeneracy Correlates with Sensitivity to Single-

Point Synonymous Codon Substitutions. We hypothe-
sized that the number of mRNA sequences that give rise to the
same cotranslational profile (i.e., the profile’s degeneracy)
should be related to the sensitivity of the cotranslational profile
to single-point synonymous substitutions. To test this

hypothesis, we examined if there was a correlation between
the number of degenerate sequences (Table S4) and the
number of insensitive mutations. An insensitive mutation is one
in which a synonymous substitution into the optimized mRNA
sequence causes no change in the cotranslational profile, with a
threshold of E(MCk) ≤ 0.075 (eq 23). We only have five points
to plot; therefore, to increase the statistical power of this test
we created three additional cotranslational profiles for MIT that
we had our framework create optimized sequences for and for
which we calculated their degeneracy and number of insensitive
mutations. These three profiles (Figure S3) are dissimilar to the
other five profiles. We find an R2 Pearson correlation coefficient
of 0.74 between a profile’s degeneracy and the number of
insensitive mutations (Figure 7, p value = 0.0053). This

supports our hypothesis that a relationship exists between a
cotranslational profile’s mRNA sequence degeneracy and that
profile’s robustness to single-point synonymous mutations.
This result has the experimental implication that knowledge of
the impact that a small number of synonymous mutations have
on a protein’s cotranslational folding can provide information
on the much larger sequence space of transcripts that give rise
to the same cotranslational behavior.
We tested the robustness of the correlation in Figure 7 by

changing the threshold of E(MCk) (eq 23) used to identify
degenerate sequences to first 0.0825 and then 0.0900 and also
by changing the functional form of E(MCk) to a root-mean-
square form (eq S17) with a E(MCk) threshold of 0.0150. We
find the resulting R2 correlations range from 0.52 to 0.93 for
these three cases (Figure S4) with statistically significant p
values for two of them. In one case the p value is just above the
significance level threshold of 0.05 (p value = 0.0657, Figure
S4(c)). This suggests the correlation is fairly robust, although
testing this correlation for other proteins in future research is
important in establishing whether this is a general phenomen-
on.

Sensitive Codon Positions Tend To Be Far from
Equilibrium. A fundamental question in molecular biology is
why synonymous codon substitutions at some codon positions

Figure 6. Sensitivity profiles for the optimized mRNA sequences.
χmax(j) as a function of the codon position for the different MIT
mRNA sequences. Panels a, b, c, d, and e display the sensitivity profiles
arising from the optimized mRNA sequences shown, respectively, in
Figure 4a, 4b, 4c, 4d, and 4e.

Figure 7. The number of degenerate mRNA sequences per
cotranslational profile shown in Figures 4a−e and Figure S3 as a
function of the number of single-point-synonymous mutations that
have no effect on the cotranslational profile (i.e., insensitive
mutations). The eight (two of them are overlapping) different data
points in this plot arise from the eight optimized mRNA sequences of
the MIT protein generated by our framework (Figures 4a−e and S3.).
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along a coding sequence have a big effect on cotranslational
behavior but mutations at other positions do not. For example,
for the profile in Figure 4d, why is codon position 85 highly
sensitive to synonymous mutations while at position 97 such
mutations have no effect on the folding process (Figure 6d)?
Our recent Perspective article1 emphasized that because

translation-elongation kinetics can have such a large impact on
nascent-protein behavior it must be the case that for many
proteins their cotranslational folding occurs under non-

equilibrium (i.e., “kinetically controlled”) conditions rather
than quasi-equilibrium (i.e., “thermodynamically controlled”)
conditions. Therefore, we hypothesized that codon positions
that result in significant cotranslational profile changes upon a
synonymous mutation are those that are furthest from
equilibrium. This hypothesis predicts that there should exist a
correlation between χ(j) and a measure of the distance from the
equilibrium process of cotranslational folding.
To test this hypothesis, we first define Δ(j) as

Δ = − + − + − + −j N j P j P j P j P j P j P j( ) ( 1)(( ( ) ( )) ( ( ) ( )) ( ( ) ( )) )c U
org

U
eq 2

I
org

I
eq 2

F
org

F
eq 2

(25)

where the equilibrium state probabilities, Piϵ{U,I,F}
eq ,are calculated

under conditions in which translation is arrested (ω(j) = 0 at all
j). In eq 25, we are multiplying the difference between the
equilibrium and the original cotranslational profiles at codon j
where a synonymous mutation could be potentially made by
the number of codon positions downstream of j − 1 which have
the potential to be impacted by the mutation at j.
We find moderate to strong correlations between χmax(j) and

Δ(j) for the five cotranslational profiles (Figure 8) of MIT
protein. For three out of the five profiles, 82% or more of the
variance in codon position sensitivity to synonymous mutations
can be predicted by the deviation of the original profile from
equilibrium. For the other two profiles, 61% and 33% of χmax’s

variance can be explained by Δ. This means that in the majority
of cases for the MIT protein, simply comparing the optimized
and arrested-ribosome cotranslational profiles provides a
reasonable predictor of which codon positions are likely to
strongly influence cotranslational folding upon a synonymous
mutation.

Similar Results Are Found Even at Physiologically
Relevant Rates. All previous results were based on applying
our sequence design method to the MIT domain simulated
using a coarse-grained representation and low-friction Langevin
dynamicstwo modeling techniques known to artificially
accelerate the rates of protein folding by orders of magnitude.48

For this reason, the codon translation rates were also

Figure 8. Scatter plots of χmax versus Δ(j) for the various cotranslational profiles of the MIT protein shown in Figure 4a−e. Panels a−e show data for
the five optimized mRNA sequences shown in Figure 4a−e, respectively. These plots exhibit a linear correlation indicating that the impact that a
single synonymous point mutation has on a cotranslational profile is a function of the deviation of the original cotranslational profile from
equilibrium.
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accelerated in those synthesis simulations (see Methods). This
raises the question of whether the conclusions drawn from MIT
will hold for proteins that are modeled at more realistic,
physiologically relevant rates.
To address this question we applied our method to domains

from four different proteins from E. coli (SYK1, domain 1;
TRXB, domain 3; FDHF, domain 4; AAT, domain 2) that were
previously predicted38 to cotranslationally fold. We used
estimated codon translation rates for E. coli growing at 310 K
(see Methods) and doubling every 150 min. In these estimates
the 64 codons translate with rates that range from 2.5 to 54.0
AA/s. We used a previously published phenomenological
model39 that predicts a domain’s kFU(j) and kUF(j) values (eqs
21 and 22) on the ribosome based, in part, on the domain’s size
and structural class. These models provided us with all the rates
necessary to use our design framework. Thus, we did not need
to use molecular simulations to obtain the interconversion rate
matrix M(j) as we did for MIT.
We find that for three out of the four of E. coli protein

domains our method can find mRNA sequences that accurately
reproduce user-defined profiles (Figure 9). The algorithm did
not work well for one of the domains (Figure 9d); we discuss
this failure in depth later. Thus, as with MIT, our algorithm
works even at physiologically relevant rates of folding,
unfolding, and codon translation.
We also examined whether the biologically relevant findings

from MIT also held for these proteins. We find that indeed they
do: critical codon positions can shift depending on the
cotranslational profile (Figure S5) as seen by plotting χmax vs
j for the two cotranslational profiles of FDFH protein (Figure
9c). Mild to moderate correlations between χmax and Δ are
observed for these proteins (Figure S6), indicating that the
more sensitive a codon position is (i.e., the larger χmax) the
more likely it is to be located at positions where the
cotranslational profile is further from the equilibrium profile.
Also, tentatively, we observe that, as with the MIT domain, the

number of unique mRNA sequences that yield the same
cotranslational profile for TRXB protein depends on the
original cotranslational profile and likely spans almost an order
of magnitude or more (Table S5). We emphasize that the last
observation is tentative because we know that, despite our best
efforts, our estimates of the number of degenerate mRNA
sequences are not converged for all of the cotranslational
profiles associated with the TRXB protein. Unlike MIT, only
for a minority of the 32 independent runs of our framework do
we find the same unique sequences (data not shown). This
means the values reported in Table S5 are lower bounds of the
true number of degenerate mRNA sequences. Because the
numbers of degenerate sequences are not exact, we cannot test
whether, like for MIT, the degeneracy correlates with the
sensitivity to single-point synonymous mutations for these
proteins. Thus, where the data permits rigorous testing, all of
the conclusions drawn from these E. coli proteins are consistent
with those from MIT.

Ratio of the Time Scales Also Contributes to the
Sensitivity of a Codon Position to Synonymous
Mutations. Not all of the variance in Figures 8 and S6 is
explained by Δ (i.e., R2 ≠ 1). Thus, other factors must also
contribute to the magnitude of the effect that a synonymous
mutation at a particular codon position has on a cotranslational
profile. To gain insight into these additional factors, we
analytically solved a chemical kinetic model describing
cotranslational-domain folding involving only two states, U
and F, for an exact relationship between χ(j) and Δ(j). (An
analytic solution for a three-state folder is not possible to our
knowledge.) We find that the relationship between χ(j) and
Δ(j) (derivation provided in the Methods section) in this
situation is

χ = | | Δj A B j( ) ( ) (18)

where the A and B are defined by eqs 15 and 19, respectively.
Thus, while χ is a function of Δ, it is also a function of A and B,

Figure 9. Monte Carlo-master-equation-based framework successfully optimizes mRNA sequences that reproduce user-defined cotranslational
profiles for E. coli proteins (a−d). Folding probabilities of the (a) first domain of SYK1, (b) third domain of TRXB, (c) fourth domain of FDHF, and
(d) second domain of AAT proteins are plotted as a function of nascent chain length during synthesis. Different cotranslational profiles of the same
protein are plotted in a different color and labeled by an integer index 1, 2, or 3. User-defined target cotranslational profiles are plotted with dashed
lines, whereas optimized cotranslational profiles are plotted with discrete data points. In (d), the dashed blue line is the equilibrium folding curve of
AAT protein.
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which are terms involving ratios of rates associated with
translation-elongation kinetics and the kinetics of domain
folding. If eq 18 is accurate, it should be the case that plotting χ
vs |A|ΔB for the E. coli domains (which are two-state folders)
should yield a perfect one-to-one correspondence (i.e., R2 = 1),
and indeed, this is what we find (Figure S7). Thus, the
sensitivity of a cotranslational profile to synonymous mutation
is a function of Δ and a ratio of time scales.
To estimate the relative contributions of the terms A and B

to χ we calculated the correlation of χ with A, and χ with B, for
the E. coli proteins. We find χ has little to no correlation with B
for all cases tested (R2 ≤ 0.27, data not shown). We find that χ
correlates with A very strongly in some cases (Figures S8(b),
S8(e), and S8(h)) and weakly in others (Figures S8(c) and
S8(f)). We also note that the quantities A and Δ appear to be
anticorrelated: the TRXB protein shows a very good correlation
with |A| (R2 values vary from 0.59 to 0.72, Figure S8), whereas
the same protein exhibits a weak correlation between χmax and
Δ (R2 ≤ 0.16, Figure S6); FDHF protein shows a good
correlation of χmax with Δ (R2 = 0.58, Figure S6), but its χmax
does not correlate well with |A| (R2 ≤ 0.08, Figure S8). To test
this, we calculated the correlation of χ with |A|Δ and we find R2

≥ 0.99 in all cases Figure S9. These results indicate A and Δ are
more important than B in determining χmax. Thus, the terms A
and Δ appear to be the greatest determinants of critical codon
positions.
Situations in which This Framework Yields Poor

Agreement with User-Defined Profiles. We reported two
examples where our framework designs mRNA sequences that
result in cotranslational profiles that are in poor agreement with
the user-defined profiles (Figures 4f and 9d). These provide
case studies that illustrate the limitations of our approach. The
simplest failure to understand is that shown in Figure 9d for a
domain in the E. coli protein AAT. At equilibrium (i.e., infinitely
slow translation), this domain cotranslationally folds (Figure
9d, dashed blue line). However, when we design a user-defined
target cotranslational profile no mRNA sequence can be found
that recapitulates it. This appears to be a conundrum because Δ
is large in this case at essentially all codon positions beyond
345. However, the folding and unfolding rates for this domain
are much smaller than the individual codon translation rates,
meaning that it never has time to fold at the elongation rates
found in E. coli. More precisely, within the analytic expression
relating χ and Δ (eq 18), this very slow domain folding drives A
→ 0, meaning that no matter how large Δ is, the ratio of time
scales ensures we cannot alter the domain’s folding behavior
with E. coli’s range of available codon translation rates.
Specifically, the denominator in the expression of A (eq 15)

contains the term ω +j
k j

( 1)
( )

mut

eq ; with such a small kUF(j) and kFU(j)

for this domain, keq(j) tends toward zero and the term ω +j
k j

( 1)
( )

mut

eq

achieves a very large value, driving A toward zero.
The other example is the user-defined profile shown in

Figure 4f (solid lines), which cannot be accurately reproduced
at codon positions 65−80 and positions 100−110. This failure
can be understood by noting that the equilibrium cotransla-
tional profile of MIT is accurately represented by the quasi-
equilibrium profile shown in Figure 3 (top), and thus, at
equilibrium the intermediate state in not significantly populated
between codons 65 and 80 and the folded state is not
significantly populated between codon 100 and 110. The target
profile in Figure 4f requires these states to be significantly

populated in these respective regions. Thus, our framework
yields poor agrement here because there is no thermodynamic
driving force to populate intermediate or folded states in these
regions. Expressed more technically, the maximum extent to
which a state can be populated at codon position j is always less
than or equal to the maximum equilibrium probability that the
state can be populated between codon positions 1 and j, that is,
Pi(j) ≤ max{Pi

eq(1),...,Pi
eq(j)}, where Pi(j) and Pi

eq(j) are,
respectively, the probability of being in state i at codon position
j during continuous synthesis and at equilibrium (i.e., arrested
translation). Thus, despite the fact that our framework exploits
the nonequilibrium nature of translation to control the
cotranslational folding process, thermodynamic properties of
the ribosome-nascent chain complex set hard bounds on the
range of possible nascent chain behaviors that an mRNA
sequence can encode.

■ DISCUSSION
Synonymous codon-usage bias in the genomes of organisms
appears to have been evolutionarily selected for in part to alter
the translation-rate profiles across coding sequences to
influence the process of cotranslational protein folding.9,49,50

Fundamental biological questions related to this phenomenon
remain unanswered, including why there is a differential impact
on cotranslational folding depending on the location at which a
synonymous mutation is introduced along a transcript. In the
present study, we developed a computational framework
(Figure 1b) that exploits the nonequilibrium nature of
translation to design mRNA sequences that can control
cotranslational folding in a user-defined manner. We addressed
biological questions on the physical origins of critical codon
positions and examined the extent to which a cotranslational
profile can be encoded by different synonymous mRNA
sequences.
Our results show that knowledge of the underlying rates of

codon translation, folding, and unfolding of a domain during
synthesis can be used as inputs to our framework to rationally
design mRNA sequences to manipulate nascent-chain behavior.
Specifically, the desired cotranslational behavior is first defined
as the probability of a protein segment being in a particular
state at different nascent chain lengths during synthesis, which
we refer to as the target cotranslational profile. The framework
then uses Metropolis Monte Carlo to search the astronomically
large mRNA sequence space that encodes the protein, which
arises from the various combinations of synonymous codons, to
find the optimal mRNA sequence that most closely reproduces
the user-defined cotranslational profile as predicted by a master
equation model. Varying the mRNA sequence through
synonymous codon mutations alters the rate at which the
ribosome moves along it. Provided the rate matrix M(j) and
codon translation rates are known and regardless of the
molecular origin of these rates,51−53 our method is applicable in
principle to all kingdoms of life. Thus, our framework finds the
optimal translation-rate profile that guides a protein’s cotransla-
tional protein folding in a user-defined manner. In this way,
translation-elongation dynamics are used in our framework to
control cotranslational folding.
With this framework we demonstrated that a wide range of

cotranslational folding behaviors can be encoded in an mRNA
sequence constructed by using different combinations of
synonymous codons. For the MIT domain, which can populate
an on-pathway, native-like intermediate, we encoded cotransla-
tional behavior in the state probabilities that displayed step-
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function (Figure 4b and 4d), linear-ramp (Figure 4e), and a
combination of step-function and linear-ramp (Figure 4c)
changes during synthesis. Reproduction of these profiles using
the optimized mRNA sequences in independent coarse-grained
simulations (Figure 4) demonstrates the precision our
framework can achieve in controlling the cotranslational folding
process.
To estimate the rates at which MIT interconverts between

states we used coarse-grained molecular dynamics simulations.
Such simulations have the well-characterized effect of
dramatically speeding up folding rates,48 and therefore, the
codon translation rates were increased in the continuous-
translation simulations to a rate that is much faster than occurs
in vivo. To test if our framework offered a similar level of
control over cotranslational folding when the values of these
rates were realistic, we utilized estimated E. coli codon
translation rates39 that range from 2.4 to 54.0 AA/s and
estimated38 domain folding and unfolding rates that agree with
experimental values.38,40 We applied our framework to domains
in four E. coli proteins and found that in most cases the
framework could find mRNA sequences that quantitatively
reproduced the user-defined cotranslational profiles (Figure 9),
demonstrating that the framework works equally well at
physiologically relevant rates.
Compared to other strategies for influencing nascent-protein

behavior, our framework is unique in a number of ways.
Conventional techniques, referred to as codon optimization
methods,17,54 frequently focus on designing mRNA sequences
that maximize the amount of protein that is produced by an
mRNA molecule. These methods often utilize various
characteristics of codons as surrogates for codon translation
rates, such as whether they are rare or common in the
organism’s genome or have low or high cognate tRNA
abundances. For example, a sequence design technique54 for
heterologous protein expression is to use the most common
synonymous codon at each position in an mRNAs coding
sequence based on the assumption that common codons are
translated quickly and more accurately.55 What sets our
approach apart from these other methods is that our framework
explicitly accounts for the influence of translation dynamics on
cotranslational protein behavior. Thus, our framework can
design proteins that avoid misfolding and thereby increase the
amount of functional protein in heterologous expression.
Unlike other approaches, our method can predict its own
success or failure. For example, for the user-defined profile in
Figure 4f (solid lines), our framework predicted (data not
shown) that the best an mRNA sequence could do is reproduce
the profile between codon positions 80 and 105 and fail
elsewhere, which is what we observed when we ran the explicit
coarse-grained simulations of protein synthesis.
A challenge in applying our framework is knowing the states

a nascent protein populates during translation, the intercon-
version rates between those states, and the individual codon
translation rates. High-throughput and single-molecule experi-
ments, however, have made it possible to measure some of
these quantities. For example, ribosome profiling data are being
used to estimate in vivo codon translation rates.63−66 A number
of techniques67,68 can provide a measure of cotranslational
folding curves. For example, FactSeq67 can evaluate equilibrium
cotranslational profiles. With advances in fluorescence-based
techniques69,70,72 it should be possible to study the time-
dependent folding kinetics of a nascent protein on an arrested
ribosome. As described by Johnson,70 donor (D) and acceptor

(A) dyes can be attached to two chemically modified nascent
chain residues to measure changes in FRET efficiency71 and
thereby probe folding and unfolding rates. Performing these
experiments on a series of truncated mRNA sequences of
different lengths would generate the time series of states at
those codon positions, which could then be used in our master-
equation approach. In addition, a recent publication from the
Bustamante73 group has measured the folding and unfolding
rates of a domain stalled on the ribosome. Information
obtained from such experiments could potentially be used to
develop a phenomenological model to predict the domain
folding and unfolding rates near the ribosome surface. Even
when such data are not available, there are theoretical models
that predict an organism’s codon translation rates74,75 and a
domain’s bulk folding and unfolding rates.40,76,77 Thus, our
framework can be utilized for various proteins using measured
or estimated rates currently available in the literature.
This framework can be extended to design mRNA sequences

to control other cotranslational nascent-protein behaviors. In
eukaryotes and prokaryotes, there are at least 1180 different
cotranslational processes3,15,56−58 that can act on a nascent
chain during its synthesis. Each one of these processes can be
represented as a different state in the cotranslational reaction
network (Figure 2b), resulting in a modification to the rate
matrix M(j) used in the master equation (eq 3). For example,
to incorporate the effects of the cotranslationally acting E. coli
chaperone trigger factor on two-state cotranslational folding
would require an additional state to be added to the reaction
scheme. This new state would account for the binding of trigger
factor to the unfolded state of the domain. Trigger factor has
been shown to slow down the cotranslational folding of one
protein.22 Therefore, folding rates of the protein would have to
be decreased for this new state by an appropriate amount.
Besides this, no changes are required to our framework (Figure
1b) to account for these additional processes. Extending the
model in this way would open up a large range of possibilities,
such as making it possible to design mRNA sequences that
minimize the chances of premature nascent-protein degrada-
tion59 and maximize the efficiency of the cotranslational
translocation of secretory proteins into the endoplasmic
reticulum.60

Seven synonymous variants of the EgFABP1 gene were
found to exhibit widely different behavior in E. coli:61 one out of
the seven variants produced a large fraction of insoluble,
aggregated protein, suggesting cotranslational folding was
altered by this specific set of mutations. On the other hand,
the other six variants changed the fraction of insoluble protein
very little relative to wild-type. Our results provide an
explanation for this codon-position-dependent impact on
cotranslational folding. In this study, we found that in silico
the MIT protein as well as the E. coli proteins recapitulate the
experimental observation that mutations at some codon
positions can have a bigger impact on cotranslational folding
than others, as χmax was found to be profile dependent (Figures
6 and S5). This allowed us to explore within these models the
factors determining such critical-codon positions. We found
that at a given codon position j, the further the nascent chain
state probabilities were from their equilibrium values the
greater the impact a single synonymous codon substitution
could have at that position (Figures 8 and S6). That is, the
farther a cotranslational profile is from equilibrium, the more
likely it is that synonymous codon substitutions will
significantly affect that profile and the more likely it will be
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that critical positions are those positions that exhibit the
greatest deviation from equilibrium. This is supported by the
moderate to strong correlation of Δ, a measure of the deviation
from equilibrium, with χmax, a measure of the impact of
synonymous mutations on the cotranslational profile (Figures 8
and S6).
The deviation from equilibrium is not the only determinant

of critical codon positions because R2 ≠ 1 in Figures 8 and S6.
To gain insight into what these other factors are we derived an
exact expression (eq 18) for the relationship between χ and Δ
by solving a chemical reaction scheme representing the
cotranslational folding of domains that fold in a two-state
manner. We found that two additional terms, A and B, appear
in eq 18. These terms are functions of ratios of various time
scales associated with translation and folding. For example, A is
proportional to the relative change in a codon position’s
translation rate upon mutation as well as the relaxation rate of
the nascent-protein dynamics. These additional factors account
for the unexplained variance in Figures 8 and S6, with A and Δ
as the two major determinants of the position-dependent
impact synonymous mutations have on cotranslational folding
(Figure S9); B exhibits little correlation with χ. When A
strongly correlates with χmax, Δ exhibits a weak correlation and
vice versa (see, for example, proteins TRXB and FDHF in
Figures S6 and S8). This suggests that for some domains the
deviation of the cotranslational profile from equilibrium is the
primary determinant of critical codon positions, and for others
a ratio of time scales as represented by A is more important.
For the MIT protein and E. coli protein TRXB we found that

the critical-codon positions change depending on the cotransla-
tional profile (Figures 6 and S5). This phenomenon is
consistent with studies of the Multidrug Resistance 1
(MDR1) protein.62 Single-point synonymous mutations
introduced at nucleotide position 1236 (C > T) or 3435 (C
> T) in the wild-type MDR1 gene did not change the drug-
transport activity of the mutant transcripts, suggesting they did
not perturb the protein’s structure.62 However, MDR1’s
functionality was altered when both of these mutations were
present simultaneously in the transcript. In light of our results,
this experimental result suggests that the codon position
containing nucleotide 3435 is not a critical codon position for
the wild-type cotranslational profile but becomes a critical
codon position for the cotranslational profile encoded by the
1236 (C > T) mutant transcript and vice versa.
We observed that the cotranslational profile influences the

number of degenerate mRNA sequences that give rise to it, and
that this degeneracy correlates with the sensitivity of the
cotranslational profile to single-point mutations. For example,
the number of mRNA sequences that give rise to the same
cotranslational profile can span 3 orders of magnitude (Table
S4) depending on the starting cotranslational profile of the
MIT domain. (The results for the TRXB protein were
inconclusive on this point because the degeneracy did not
converge in the calculations.) We found that the mRNA-
sequence degeneracy of these cotranslational profiles correlated
with the number of codon positions that upon synonymous
mutation had no impact on the cotranslational profile (Figure
7). The correlation was statistically significant in two out of
three robustness tests we carried out (Figure S4), suggesting
that the validity of this observation is tentative and needs to be
established for other proteins as well. (Again, the degeneracy
for the E. coli proteins did not converge, meaning we could not
test this correlation for them.) This observation suggests

experimentalists may be able to estimate the relative degeneracy
of a cotranslational profile from a single-point synonymous
mutation scanning experiment. For example, assume there are
two orthologous proteins of the same length. Our observation
suggests that a synonymous-codon scanning experiment can be
run, and the protein that can withstand the largest number of
single-point codon mutations without changing its cotransla-
tional-folding behavior will have more degenerate mRNA
sequences. This correlation is not a tautology because the
number of insensitive mutations arising from single-point
substitutions across an mRNA sequence might not capture the
combinatorial complexity, nor the additive and subtractive
effects that multiple, simultaneous mutations could have on a
cotranslational profile. Indeed, the aforementioned MDR1 gene
is an example in which there is a synergistic effect due to a
double mutation.
The sensitivity of far from equilibrium cotranslational profiles

to synonymous codon mutations has implications for mRNA
sequence evolution and codon usage in organisms (Figure 10).

Consider the following thought experiment: Two different
proteins in an organism are both crucial to a cell’s viability. One
of these proteins, however, has a highly degenerate cotransla-
tional profile, meaning its cotranslational behavior is robust to
synonymous codon mutations. The other protein has a low-
degeneracy cotranslational profile, and hence, its nascent
behavior can be perturbed by just a few synonymous mutations.
Our results suggest that if cotranslational processing is
important to the maturation of these proteins then the latter
protein will exhibit fewer synonymous codon mutations across
a species population than the former. This suggests that the
nonequilibrium nature of cotranslational processes can
contribute to shaping the codon usage across the genomes of
organisms.
In summary, this study has provided a number of biological

insights by identifying phenomenological and physical rules
governing which positions along an mRNA molecule will have a
significant impact on cotranslational behavior due to a
synonymous mutation. Our results show that a cotranslational
profile’s deviation from equilibrium, its sensitivity to single-

Figure 10. The connections made in the study between different
phenomena related to the cotranslational folding of a protein and their
biological implications. Black arrows indicate the establishment of a
direct connection between phenomena, while the shaded arrow
indicates an indirect link. Blue arrows indicate the biological
phenomena that are directly impacted by these physical properties
of translation-rate and cotranslational profiles.
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point mutations, and its mRNA-sequence degeneracy are inter-
related quantities and that each of these factors has direct
implications for nascent-protein behavior, critical codon
positions, and mRNA sequence evolution (Figure 10).
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(76) Muñoz, V.; Eaton, W. A. Proc. Natl. Acad. Sci. U. S. A. 1999, 96,
11311−11316.
(77) Gromiha, M. M.; Selvaraj, S.; Thangakani, A. M. J. Chem. Inf.
Model. 2006, 46, 1503−1508.
(78) Kaiser, C. M.; Goldman, D. H.; Chodera, J. D.; Tinoco, I., Jr.;
Bustamante, C. Science 2011, 334, 1723−1727.

(79) Zhou, M.; Guo, J.; Cha, J.; Chae, M.; Chen, S.; Barral, J. M.;
Sachs, M. S.; Liu, Y. Nature 2013, 495, 111.
(80) In prokaryotes and eukaryotes: misfolding, glycosylation,
acetylation, SEC-translocation, and SRP binding. In prokaryotes:
deformylation, demethionation, and the binding of trigger factor. In
eukaryotes: ubiquitination, phosphorylation, and NAC binding.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b08145
J. Am. Chem. Soc. 2016, 138, 1180−1195

1195

http://dx.doi.org/10.1021/jacs.5b08145

